Subdividing the surface in both the u and w directions yields a 5 x 5
defining polygon net giver by

Cia[-15015)  Chu[-10 2.5 15]
C12[~-15 2.5 10) Ca3[-10 5 10]
C1,3[-15 5 0) Cs,3[-10 7.5 0]
C1,4[-15 2.5 —10] Ca,[—10 5 —10]
Cis [—15 0 —15} Cas [-—10 2.5 —15]

C3,1 [0 5 15] Cq,1[10 2.5 15]  Cs,1[15 0 15]
Cs2[0 7.5 10) C42[10 5 10] Cs,2[15 2.5 10]
Cs,3[0 10 0] Cy,3[10 7.5 0] Cs,3[15 5 0]
Cs,4[0 7.5 —10] C44[10 5 =10]) Cs,4[15 2.5 —10]
Css[05 —15]  Cys[10 2.5 —15] Cs,5[15 0 —15]

Note that this net is derivable from either of the two above using Egs. (5-119)
and (5-120).

The original surface and all three of the subdivided surface nets are shown
in Fig. 6-51. Each of the surfaces is identical to the original surface.

Clearly, as the surface is further subdivided tlie defining polygon net con-
verges to the surface.

6-15 GAUSSIAN CURVATURE AND SURFACE FAIRNESS

Of fundamental concern in computer aided design is development of appropri-
ate techniques for determining and/or visualizing the fairness or smoothness
of surfaces. It is well known that the bicubic surfaces (Coons, Bézier or B-
spline) commonly used, although C? continuous everywhere, can exhibit unfair
-bumps, flat spots or undulations. Currently the best mathematical techniques
for determining surface fairness use Eulerian (orthogonal) nets of minimum and
maximum curvature (see Refs. 6-28 and 6-29) and of Gaussian curvature (see
Refs. 6-28 to 6-32, and Sec. 6-8).

Recalling the discussion of Sec. 6-8, two combinations of the principal cur-
vatures, called the average and the Gaussian (total) curvatures, characterize the
local shape of the surface. The average curvature is

g Nmm*;"m . : (6 —45)
The Gaussian curvature is
Kg = Kmin*Fmax (6 —46)

where Kmin and Kmax are the principal curvatures. The Gaussian curvature at a
point on the surface indicates whether the surface is locally elliptic, hyperbolic
or parabolic (Gaussian curvature positive, negative or zero).




(a)
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(e)

Figure 6-51' B-spline surface subdivision. (a) Surface; (b) original defining polygon
X net;(c)neunbdividodinw;(d)mtmbdivldedlnu;(e)notcubdivlded
in both u and w.




Here it is interesting to note that if the Gaussian curvature is zero, then
the surface is developable; i.e., it can be unfolded onto a plane. A developable
surface is singly curved, e.g., a cone or cylinder such as a beverage can. This
implies that one of the principal curvatures, Kmin OF Kmax, is zero. Hence, the
Gaussian curvature is zero. . '

The average and Gaussian curvature for a surface can be presented using a
number of techniques. If display capabilities are limited to line drawings, then
contour plots are most useful (see Refs. 6-28 and 6-29). Dill (Ref. 6-30) and
Dill and Rogers (Ref. 6-32) showed that color or gray scale encoded Gaussian
curvature raster displays are an effective technique.

Figure 6-52 shows gray scale encoded! Gaussian curvature images of several
test surfaces along with corresponding defining polygon and wire frame para-
metric representations of the surfaces. The surfaces are all bicubic (k = I = 4)
B-spline surfaces. The three surfaces shown in Fig. 6-52 represent increasing
degrees of discontinuity in the smoothness or fairness of the surface. Figure 6—
52a is completely smooth and fair. In Fig. 6-52b the two pronounced ridges of
decreased smoothness are caused by the three coincident polygon net lines at
each end. In Fig. 6-52c the extended ‘hard’ line in the middle of the surface re-
sults from the three coincident polygon net lines extending across several interior
polygon lines shown in the defining polygon net.

In general, the encoded Gaussian curvature images make the character of
the surfaces more obvious. For example, Figs. 6-52a and b show a large nega-
tive value at the corners. This negative curvature is a result of constraining the
boundaries of the surface to be straight and flat while the interior is full and
positively curved. The encoded Gaussian curvature image in Fig. 6-52b empha-
sizes the flatness of the area between the ridges. Note that since the Gaussian
curvature is zero in this region, this portion of the surface is developable. Note
also that the defining polygon net in this region is developable. Finally, the band
across the middle of the Gaussian encoded image in Fig. 6-52c shows that in this
region the surface is a plane folded in the middle. The fact that the fold is a
straight line explains the vanishing of the Gaussian curvature along the line.

An example illustrates the technique for calculating the Gaussian curvature.

Example 6-17 Gaussian Curvature

Determine the Gaussian curvature at u = 1/2, w = 1 for the open B-spline
surface previously defined in Ex. 6-15.

First recall the basis functions N;4 and M;; from Ex. 6-15. From these
results the first and second derivatives needed to determine Qu, Qu;, Quw,

These images are monochrome renderings of color images in Ref. 6-33. In encoding the
Gaussian curvature images, curvature values at the four vertices of a dense quadrilateral ap-
proximation of the surface were averaged. The average value was assigned to each polygon.
The curvature range was divided into a number of equal intervals (except at the ends) corre-
sponding to the available intensity range. A legend giving this range is shown to the right of
the image. The aliasing (stai like boundaries bet different i ities) is due to the
limited ber of available i ities and not to the polygonal approximation.

e —




Polygon net

Quu a0d Quuw, and subsequently the Gaussian curvature, can be calculated.

Specifically,

Nig=(1-w?
Nz, = 3u(l —u)?
Nag=3u*(1—v)
Nea=1v®

and
My3=0

Mz = (2_"2"’_)2

Ms,
Mys=(w-1)

. 2-w)Ew-2)
p= 2

Figure 6-52 Gaussian curvature. (a) Smooth surface; (b) short ‘hard’ line; (c) long:
‘hard’ line. (Courtesy J. C. Dill and D. F. Rogers.) g

Ny=-31-u)?
Nj 4 =301 —u)(1-3u)
Néﬁ = 30(2 - 3‘4)
Niy=3u?

M{_; =0

M;.3=W—2

M:"; =4-3w
M"; = 2(!0 — 1)

Gaussian curvature

Gaussian curvature

Nyo=6(1— u)

N3y =6(3u—2)

Ni'y = 6(1—3u)
44 = bu

M{'_; =0

M;3=1

Mz =-3

i
i3 =2




Evaluating the derivativesat u = 1/2,w =1, and substituting into Eqs. (6-71)
to (6-75), yields
Q(1/2,)=[0 35/4 0]

Qu/z)=[30 0 0]
Qu(1/2,1)=[0 0 10]
Quo(1/21)=[0 0 0]
Quu(1/2,1)=[0 -30 0]
Quw(1/2,1)=[0 -10 10]
The components of Eq. (6-48) for the Gaussian curvature are
QuxQu=[30 0 0]x[0 0 10]=[0 —300 0]
1Qu X Qul* = (90000)*
A=[QuxQu]-Qu=[0 —300 0].[0 -30 0] = 9000
B=[QuxQu]-Qus=[0 -300 0]-[0 0 0]=0
C=[QuxQu]-Quw=[0 300 0]:[0 -10 10]=3000
Using Eq. (6-48) the Gaussian curvature is

AC—B __ (9000)(3000) = (0) _ , 10 10~

%= Qe % Qul’ (90000)*

Since x4 > 0, the surface is locally elliptical.

6-16 RATIONAL B-SPLINE SURFACES

As with rational curves, rational forms of the quadric surfaces, of Coons bicubic
surfaces and of Bézier surfaces are possible. However, both because of space
limitations and because they represent a generalization of all these forms, only
rational B-spline surfaces are considered.

A Cartesian product rational B-spline surface in four-dimensional homoge-
neous coordinate space is given by

n+lm+l

Qu,w) =Y Y BliNix(u)Myu(w) (6-85)

i=1 j=1

where the B{'J’s are the 4D homogeneous defining polygon vertices and N x(u)
and Mjy(w) are the nonrational B-spline basis functions previously given in
Eq. (5-84).




Projecting back into three-dimensional space by dividing through by the
homogeneous coordinate gives the rational B-spline surface

n+lm+l

3 3 higBisNap(WMia(w) oy
Quu) = S — =YY BisSis(ww)
‘2;1 ; higNex(w)Mja(w) =177 (6 - 86)

where the B},'s are the 3D defining polygon net points and the 5y;(u,w) are
the bivariant rational B-spline surface basis functions

n+l mﬁJN“h(u)MH(W) (6 = 87)
E E hit g1 Nia e () Mj1 i (w)

i1=1j1=1

SiJ(ui w) =

It is convenient to assume h;j > 0 for all 4, j. :
Here, it is important to note that S;; (u,w) is not the product of Rix(w)

and Rj(w) (see Eq. 5-123). However, the S; j(u,w) have similar shapes and .
analytic properties to the product function N (u)Mj,(w). Hence, rational B- .
spline surfaces have similar analytic and geometric properties to their nonrational |

counterparts. Specifically,
The sum of the rational surface basis functions for any u, w values is

n+lm+l

¥ Silwmw)=1 (6-88)

i=1 j=1

Each rational surface basis function is positive or zero for all parameter j,

values u,w, i.e,, Sij = 0.

Except fork=1orl=1, each rational surface basis function has precisely_

one maximum.
The maximum order of a rational B-spline surface in each parametric direc-

tion is equal to the number of defining polygon vertices in that direction. “ &

A rational B-spline surface of order k,! (degree k L p -1yl 6%, G
continuous everywhere.

A rational B-spline surface is invariant with respect to a projective transfo

mation; i.e., any projective transformation can be applied to the surface by

applying it to the defining polygon net. Note this is a stronger condition 3

than that for a nonrational B-spline surface.

The surface lies within the convex hull of the defining polygon net formed b;
taking the union of all convex hulls of k, 1 neighboring polygon net vertices.,

. The variation diminishing property is not known for rational B-spline su

P ot £

_ faces. e
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The influence of a single polygon net vertex is limited to %k/2, +1/2 spans
in each parametric direction.

I!l; tmngulated the defining polygon net forms a planar approximation to
the surface
Ifthenumberofdeﬁnm(polygonnetvuﬁcaheqmlmthcoldumwch
parametric direction and there are no duplicate interior knot values, the
rational B-spline surface is a rational Bézier surface.

From Egs. (6-86) and (6-87) it is clear that when all h;,j = 1, S j(u,w) =
Ni i (u)Mj(w). Thus, rational B-spline surfa buil tions and surfaces re-
duce to their nonrational counterparts. C tional B-spline surf
represent a proper generalization of nonrational B—splinemrfwuand of rational
and nonrational Bézier surfaces.

Again, as is the case for rational B-spline curves, algorithms for degree rais-
ing, subdivision (see Sec. 6-14) and surface fitting (see Sec. 6-13) of nonrational
B-spline surfaces are applicable by simply applying them to the 4D defining
polygon net, vertices.

. Open uniform, periodic uniform and nonuniform knot vectors can be used to
generate rational B-spline basis functions and rational B-spline surfaces. Knot
vector types can be mixed. For example, an open uniform knot vector can
be used in the u parametric direction and a nonuniform knot vector in the w
direction. Here we initially concentrate on open uniform knot vectors.

Figure 6-53 shows a bicubic (k = I = 4) rational B-spline surface and
:udeﬁmn;polygonnetfothu—hz;-OIS Figure 6-53c, with hy 3 =
has =1, is id B-spline surface. The effects of vary-
ingthehomogeneomooordinabevﬂuencmbemnbyoompuﬂng!’ig 6-53c to
Figs. 6-53b and d. The effects are analogous to, but not as striking as, those for
rational B-spline curves (see Sec. 5-13). Here the effects are reduced by the fact
that S; ;(u,w) is a bivariate blending function.

Figures 6-54a and b illustrate the effect obtained by setting all interior h; ;'8
= 0 and 500, respectively; .., haz = ha;3 = hag = hs3 = hyz = hq3 = 0,500.
All other h;j's = 1. Thcdzﬂnlngpolygonnetmshowninl’lg 6-53a. Setting
all the interior h;;'s = 0 effectively ig the i defining polygon net
vertices. Only the edge vertices are interpolated. In contrast, setting all the
interior h;;'s = 500 reduces the influence of the edge vertices to a minimum.
Note that changing the h; ;’s affects the parameterization of the surface. This
effect is illustrated by the cl ing of the p etric lines near the edges of the
surface when the interior h;;’s = 0 (see Fig. 6-54a) and in the interior of the
surface when the interior h; ;’s = 500 (see Fig. 6-54b).

The effects of multiple vertices or net lines are analogous to those for non-
rational B-spline surfaces (see Sec. 6-12) and of rational B-spline curves (see
Sec. 5-13). The results of moving a single vertex on the surface are also analo-
gous,

One of the 'strong attractions of rational B-spline surfaces is their ability
to represent quadric surfaces and to blend them smoothly into higher degree
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Figure 6-54 Rational B-spline surfaces withn +1=5,m+1=4, k=1=4. (a)
All interior hi's = 0; (b) all interior hq's = 500.

the homogeneous coordinate for the swept curve. Figure 6-55a shows an elliptic
cylinder generated using the elliptic curve given in Fig. 5-67b. The swept curve
is shown offset at each end.

- Rational B-spline surfaces are also used to generate ruled surfaces. The el-
liptic cylinder shown in Fig. 6-55 is of course a ruled surface. The conditions
required to generate a more general ruled surface, using rational B-splines, re-
quire that both curves be of the same order (degree), have the same knot vector
and have the same number of defining polygon vertices. If the curves are not of
the same order (degree) the degree of the lower order curve is raised (see Sec. 5-8
and Ex. 6-18). The required knot vector is the union of the knot vectors of the
two curves. Any multiplicity of knot values for either curve is included in the
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final knot vector. Knot insertion (see Sec. 5-12) is used to insure that both knot
vectors are identical. Degree raising and knot insertion insure that the number
of defining polygon vertices is identical for both curves. The resulting rational
B-spline ruled surface is described by Eq. (6-89) with
m+1 & m+1
P(w)=Q(O,w)=) BijRju(w) and Py(w)=)Y ByjRsy(w)=Q(1,w)
=1 j=1
Figure 6-56 shows an example of a ruled surface blending a quarter circle into a
fourth order rational B-spline curve. The curves and their defining polygons are
shown offset at each end. An example better illustrates the technique.

Example 6-18 Rational B-spline Ruled Surface
Determine the point at u = w = 0.5 on a ruled surface formed by blending &
120° circular arc represented by a third order rational B-spline curve defined by
Bia[0 0 0], Bia[1 V3 0],Bi5[2 0 0and [H]=[1 1/2 1],
with a fourth order rational curve defined by B21 [0 0 10),Ba2[1 1 10],
Bsa[2 0 10], Bi2(3 1 10]with [H]=[1 3/4 5 1]

First it is necessary to raise the degree of the circular arc. The circular
arc is in fact a rational Bézier curve. For the rational case the degree raising
technique discussed in Sec. 5-8 is applied to the 4D homogeneous coordinates.
The results are:

B =B}

BN =abBli+(-a)B}  w=ty i=%-n

B =B




. Projecting back into 3D space yields
Bl =B
Ega.h..n&.,++§1_-;‘-.h&& ks
"la‘=n«l;:+(xl-u«)h«
mhmummmamxwmm
Aa=hy=1
Bla=Bii=[0 0 0]
Ha=(Fw+(3)(3) =2
- (000 0 o) v o}/(@)-[1 4 o)
his= (:)(z) (a)m"‘
B ={(3)E) 1 v 0+l o 0}/G)=[2 £ o]

Ma=hs=1
Biu=Bis=[2 0 0]

" Each has four defining polygon vertices. The knot vector for each
-m?[':':T'[r]-[o D00 1T 1) Hace ¥nok hsivtion'ss
unnecessary.

For w= 0= 0.5 Eq (5-84) yields

Nia =035 Naa =05

M ¢ =0.125; Ma ¢ = 0.375; M;4 = 0.375; My =0125
Eq. (6-87) then yields

81,1 = 0.0396; 81,2 =0.0792 813 =0.0792 .91,4-0-@90
$21=0.03%;  $;,=0.0891 825 =0.594 82,4 =0.0396

The surface point is 3
: Q5,05 =[16M 0368 7624]
Qunplﬁnmlhmslnnhmm

smm.ormxuﬁonmakob.wbyrmmmm

ing that

m+1

P(w) = B,
(w) E i Ry 1(w)
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with knot vector [ Y ] is a rational B-spline curve, and recalling that a full circle
is obtained by combining four quarter circles defined by nine polygon vertices
(see Sec. 5-13), leads to a rational B-spline surface of revolution defined by (see
Ref. 6-33) ¥
9 m+l
Quw) =YY" BijSij(u,w) (6—90)
. i=1 j=1
where the knot vector [X]=[0 0 0 1 1 2 2 3 3 4 4 4] As
suming that rotation occurs about the z-axis and that the curve P(w) is defined
in the zz plane, the B;;'s are given by B) ;j = Bj for fixed j with 1 <1 < 9.
The defining polygon vertices form the corners and midpoints of a square lying
in a plane perpendicular to the z-axis with side dimension twice the radius of
the circle of revolution. The homogeneous weighting factors are the product of
those for the defining rational B-spline curve and those required to define the
-circle of revolution. Specifically, for fixed j, by ; = hj, ’I;J = h,\/ilz, hsj = hj,
hes = hjV/2/2, -+, hgj = hj. Figure 6-57 shows the defining polygon net and
curve for the rational B-spline curve to be rotated and the circle of revolution.
Also shown in Fig. 6-57 is the composite surface defining polygon net and the
surface itself.

The common quadric surfaces of revolution, e.g., the torus and the sphere
along with their defining polygon nets, are shown in Figs. 6-58 and 6-59. The
torus is generated by revolving an offset circle about one of the axes. The sphere
is generated by revolving a semicircle composed of two 90° arcs about an axis
which is a diameter of the semicircle.

As mentioned above, one of the most p ful characteristics of rational
versus ional B-spline surfaces is their ability to ‘bury’ or include quadric
surface el within a 1 sculp d surface. For example, a cylindrical

1 can be included as a part of a more general surface. Figure
6-60 shows three examples. The central portion of each fourth order surface is a
section of a circular cylinder. Figure 6-60a might represent the leading edge of a
wing or turbine blade! Figure 6-60b might represent the cylindrical bow (stem)
of a ship. Both surfaces are generated by first defining a third order circular
arc (see Sec. 5-13), raising the degree of the arc (see Ex. 6-18), making a ruled
surface from the arc and including it between the two fourth order side surface
elements. Incidentally, both of the surfaces shown in Figs. 6-60a and b are ruled
developable surfaces. Figure 6-60c shows the cylindrical element buried in a
.more general surface.
The derivatives of a rational B-spline surface are obtained by formal differ-
entiation of Eq. (6-86). The results are

N(N, D,
Q-=D'("ﬁ'--b-) (6 —91a)

TNACA airfoil sections use a circular arc to define the leading edge.
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By, By By
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Figure 6-57 Rational B-spline surface of revolution. (a) Generating curve and
defining net; (b) circle of revolution; (c) defining surface polygon net;

(d) surface of revolution.
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By s

©®)

Figure 6-59 Sphere generated as a rational B-spline surface. (a) Offset circle and
5 dddn;polym(b)drduolnwhﬁnllnddnﬁnh‘polypn;(c)
defining polygon net and sphere.

where N afid D are the numerator and denominator, respectively, of Eq. (6-86)
withd!ﬂvlﬁvu' g
n+lm+l

Nu=3" 3 hiiBig Nl (u)Mj(w)
i=l j=1

n+lme4l
Bu=3 3 higBisNia(u)My(w)
=1 j=1

a+lm+l

Fuw =37 3" hisBugNu(u)M}y(w)
i=1 j=1




- ndlmitl

Bou= 33" B bty )

=1 j=1
n+im+l

N = 5 hi3Big N () M) ()
i=1 jm1

n+lm4l

b=}¥% B i N (0) My ()
=1 jo1
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n+lm4l

b.=3"% B s N (u) M, ()
i=1 j=1

n+lm4l

Du=3"%" hi s N4 () M ()
=1 J=1

n+lm+l

Dea =373 hisNiy )My ()
=] j=1

n+lm4]
D=3 %" B g N (6) M (10)
= =1 j=1
mmm.wmﬁmmmmmmm
e Nea WM 0), N (1), M s e by Eq. (5-97) to (5-100).
These der; mmmmiwnm,mmmm(m
Seaﬂ-ls)ofthesur&ee.uwennothn i
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