Chapter 9

Grid Generation — Structured Grids

9.1 Introductory Remarks

In order to numerically solve the governing partial differential equations (PDEs)
of fluid mechanics, approximations to the partial differentials are introduced. These
approximations convert the partial derivatives to finite difference expressions, which
are used to rewrite the PDEs as algebraic equations. The approximate algebraic
equations, referred to as finite difference equations (FDEs), are subsequently solved
at discrete points within the domain of interest. Therefore, a set of grid points
within the domain, as well as the boundaries of the domain, must be specified.

Typically, the computational domain is selected to be rectangular in shape where
the interior grid points are distributed along grid lines. Therefore, the grid points
can be identified easily with reference to the appropriate grid lines. This type grid
is known as the structured grid and is the focus of this chapter. A second category
of grid system may be constructed where the grid points cannot be associated with
orderly defined grid lines. This type grid system is known as the unstructured grid
and will be introduced in Chapter 15. In the remainder of this chapter, structured
grid generation is implied wherever we refer to grid generation.

The generation of a grid, with uniform spacing, is a simple exercise within a
rectangular physical domain. Grid points may be specified as coincident with the
boundaries of the physical domain, thus making specification of boundary conditions
considerably less complex. In the previous chapters, this restriction on the physical
domain was enforced, i.e., all applications were limited to rectangular-type domains.

Unfortunately, the majority of the physical domains of interest are nonrectan-
gular. Therefore, imposing a rectangular computational domain on such a physical
domain will require some sort of interpolation for the implementation of the bound-
ary conditions. Since the boundary conditions have a dominant influence on the

-
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solution of the equation, such an interpolation causes inaccuracies at the place of
greatest sensitivity. In addition, unequal grid spacing near the boundaries creates
further complications with the FDEs since approximations with nonequal stepsizes
must be used. This form of the FDE changes from node to node, creating cumber-
some programming details.

E=E(x,y,2)
n=m(x,y,z)
L=0(x,y,2}

E=E(x)
n=n{x,y,z)
L=84(x,y,2)

Figure 9-1. Nomenclature for the generalized coordinate system.

To overcome these difficulties, a transformation from physical space to compu-
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tational space is introduced. This transformation is accomplished by specifying a
generalized coordinate system which will map the nonrectangular grid system in the
physical space to a rectangular uniform grid spacing in the computational space.
The generalized coordinate system may be expressed in many ways. Two examples
are illustrated in Figure 9-1. The first example shows the so-called body-fitted coor-
dinate system where two coordinate lines, £ and ¢, are aligned on the surface along
the streamwise and circumferential directions, and where the third coordinate, 7, is
normal to the surface. In the second example, the £ coordinate is aligned along the
body axis, { is in the circumferential direction and 7 is normal to the body axis.

For illustrative purposes, two-dimensional (2-D) problems will be considered in
detail, with a description of the three-dimensional (3-D) problems to follow. A 2-D
domain is illustrated in Figure 9-2.

Physical Domain

Figure 9-2. A typical 2-D domain for the axisymmetric blunt body problem.

In order to eliminate the difficulty associated with the nonequal stepsizes used in
the FDEs, the physical domain is transformed into a rectangular, constant step-size,
computational domain. A typical computational domain is shown in Figure 9-3.
Note that the computational domain is obtained by deformation of the physical
domain, i.e., by twisting and stretching, etc.

‘The central issue at this point is identifying the location of the grid points in
the physical domain. That is, what are the z and y coordinates of a grid point
in physical space (Figure 9-2) that correspond to a grid point (i, j) specified in
the computational domain (Figure 9-3)? In determining the grid points, a few
constraints must be imposed. First, the mapping must be one-to-one; i.e., grid lines
of the same family cannot cross each other. Second, from a numerical point of view,
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a smooth grid point distribution with minimum grid line skewness, orthogonality
or near orthogonality, and a concentration of grid points in regions where high flow
gradients occur are required. Obviously, all of the desired features may not be met
by the use of a particular grid generation technique. Grid generation techniques

which emphasize any one or a combination of these features will be presented in the
following sections.
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Figure 9-3. Computational domain with constant stepsizes A{ and An.

In general, grid generation techniques may be classified as (1) algebraic meth-
ods, (2) partial differential methods, or (3) conformal mappings based on complex
variables. In addition, the grid system may be categorized as fixed or adaptive.
Obviously, a fixed grid system is generated prior to the solution of the governing
equations of fluid motion and remains fixed independent of the solution. On the
other hand, an adaptive grid system evolves as a result of the solution of the equa-
tions of fluid motion. For example, grid points may move toward regions of high
gradients such as in the neighborhood of a shock wave.

Conformal mappings based on complex variables are limited to 2-D problems and
require a reasonable knowledge of complex variables. In addition, the determination
of the mapping function is sometimes a difficult task. Therefore, this method will
not be discussed here. In the following sections, grid generation techniques based
on algebraic and PDE methods are presented.
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9.2 Transformation of the Governing Partial
Differential Equations

The equations of fluid motion include the continuity, momentum and energy
equations. For a single phase continuum flow, the transformation of this system of
equations will be presented in Chapter 11. In this section, a simple 2-D problem is
proposed to familiarize the reader with the processes involved in the transformation
of a PDE and the complexity of the resultant equation. It should be mentioned that
the form and type of the transformed equation remains the same as the original
PDE; i.e., if the original equation is parabolic, then the transformed equation is
also parabolic. A mathematical proof is given in Reference [9-1). Now, define the
following relations between the physical and computational spaces:

£ = &(z,p) (9-1)
n = n(z,y) (8-2)
The chain rule for partial differentiation vields the following expréssion:

RN
92 Bz 3_6 + 3z 6_77 (9-3)
The partial derivatives will be denoted using the subscripts notation, i.e., gi = ;.
Hence,

7] ) 0
% = 515&-' + 77::'35 (9'4)
and similarly, 5 5
a
5y = T gy (9-5)
Now consider a model PDE, such as
Ju du
3z + a% =0 (9-6)

This equation may be transformed from physical space to computational space using
Equations (9-4) and (9-5). As a result,

du ou ou du
f:a—é. + 7].1:'5; +a (gya_é. -+ T]y‘a—n) =0

which may be rearranged as

Ou du
(& + a&y)b‘é‘ + (7 + m?y)"a"y_’ =0 (9-7)
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This equation is the one which will be solved in the computational domain. Also
note that the transformation derivatives &, &y, 7z, and 7y must be determined from
the functional relations (9-1) and (9-2). The determination of the transformation
derivatives will be addressed briefly in the next section and in more detail for a 3-D
case in Chapter 11, Comparing the original PDE (9-6) and the transformed equation
given in (9-7), it is obvious that the transformed equation is more complicated
than the original equation. Generally that is always the case. Thus, a trade-off
is introduced whereby advantages gained by using the generalized coordinates are
somehow counterbalanced by the resultant complexity of the PDE. However, the
advantages by far outweigh the complexity of the transformed PDE.

9.3 Metrics and the Jacobian of Transformation

Recall that in Equations (9-4) and (9-5), terms such as &, &, 7, and 7, appear.
These transformation derivatives are defined as the metrics of transformation or
simply as the metrics. The interpretation of the metrics is obvious considering the
following approximation:

_ % A¢
E:c t -6_1-‘ = K;
This expression indicates that the metrics represent the ratio of arc lengths in the
computational space to that of the physical space. The computation of the metrics
is considered next.
From Equations (9-1) and (9-2) the following differential expressions are ob-

tained
df¢ = &dr+§dy (9-8)
dn = mnzdz+ndy (9-9)

which are written in a compact form as

HRENIN o
dn Nz Ny dy

Reversing the role of independent variables, i.e.,

r = z(§n)
y = y&n
The following may be written
dr = z¢df+ Tqdn (9-11)

dy = yedf +yndn (9-12)




364 Chapter 9

In a compact form they are written as

dz
N (9-13)
dy Y Un dn
Comparing Equations (9-10) and (9-13), it can be concluded that
-1
f:l: Ey — Te In
Nz Ty Ye n
from which
& = Jiy (9-14)
& = —Jx, (9-15)
e = —Jy (9-16)
mo= Jrg (9-17)
where I
J=— (9-18)
Teln — YeZn

and is defined as the Jacobian of transformation.

The Jacobian, J, is interpreted as the ratio of the areas (volumes in 3-D) in the
computational space to that of the physical space.

Note that the actual values of the metrics or the Jacobian could be negative.
Obviously, the values depend on the specification of physical and computational
grid systems. The computed values of the metrics for various grid systems will
be presented shortly. For grid generation methods where analytical expressions
for the metrics can be written, they may be analytically evaluated or determined
numerically by the use of finite difference expres§ions. This point is illustrated in
the example problem given in Section 9.5.

9.4 Grid Generation Techniques

Before proceeding with the investigation of various grid generation techniques,

the objectives will be summarized. A grid system with the following features is
desired:

(1) A mapping which guarantees one-to-one correspondence ensuring grid lines of
the same family do not cross each other;

(2) Smoothness of the grid point distribution;
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(3) Orthogonality or near orthogonality of the grid lines;
(4) Options for grid point clustering.

As mentioned previously, some of the features enumerated, as in (2)—(4) above,
may not be achievable with a particular grid generation technique. In the next few
sections, various grid generation techniques are introduced.

9.5 Algebraic Grid Generation Techniques

The simplest grid generation technique is the algebraic method. The major
advantage of this scheme is the speed with which a grid can be generated. An
algebraic equation is used to relate the grid points in the computational domain
to those of the physical domain. This objective is met by using an interpolation
scheme between the specified boundary grid points to generate the interior grid
points. Clearly, many algebraic equations (or interpolation schemes, if preferred)
can be introduced for this purpose. To illustrate the procedure, consider the simple
physical domain depicted in Figure 9-4.
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Figure 9-4. The physical space which must be transformed to a
uniform rectangular computational space.
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Introducing the following algebraic relations will transform this nonrectangular
physical domain into a rectangular domain:

£ =1z (9-19)
_ ¥ .
"= (9-20)

In (9-20), y, represents the upper boundary which is expressed as

_ H, — H,
ye =H, + —1 %
Thus, it may be written that
£ ==z (9-21)
"= —g— (9-22)
H, + 7
which can be rearranged as
z=¢£ (9-23)
and
H, - H
= (i Bz o2

The grid system is generated as follows. The geometry in the physical space is
defined. For this particular problem, it is accomplished by specifying values of L,
H,, and H;. Next, the desired number of grid points defined by IM (the maximum
number of grid points in £) and JM (the maximum number of grid points in )
is specified. The equal grid spacing in the computational domain is produced as
follows:

Ag

-2
IM-1 (9-25)

1.0
JM -1

(9-26)
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i=1 > {prfe— =M

Figure 9-5. The rectangular computational domain with uniform
grid spacing.

Note that in Equation (9-20),  has been normalized, i.e., its value varies from
zero to one. With the equal step-sizes provided by Equations (9-25) and (9-26),
the uniform computational domain is constructed, which is shown in Figure 9-5 for
a 17 x 13 grid system. Therefore, the values of £ and 7 are known at each grid
point within this domain. Now Equations (9-23) and (9-24) are used to identify the
corresponding grid points in the physical space. For illustrative purposes, the grid
system generated for a physical domain defined by L = 4, Hy =2, and H; =4 is
shown in Figure 9-4.

As discussed previously, the metrics and the Jacobian of the transformation must
be evaluated before any transformed PDEs can be solved. In many instances, when
an algebraic model is used the metrics may be calculated analytically. This aspect is
obviously an advantage of the algebraic methods, since numerical computation of the
metrics will require additional computation time and may introduce some errors into
the system of equations of motion that are to be solved. To illustrate this peint, the
metrics in the proposed example are computed both analytically and numerically.

From Equation (9-21), metrics &; and &, can be determined analytically, resulting
in

E:: =1 (9—27)
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Sy = 0 (9—28)
Similarly, the following is obtained from Equation (9-22)
e _ (Hy — Hy)y/L s or
[Hy + (Hz ~ Hi)z/L]
H, - H, n
r = — 9-29
" I [Hi+ (H - B/ &29)
and
= 1 or
W = H,+ (Hy - H)z/L
1
n = (9-30)

H,+ (Hy— H))¢/L
and the Jacobian of transformation is
1
Zeln — YeTy
To compute the metrics numerically, Equations (9-14) through (9-18) are used.
Thus, the terms =z, y¢, =y, and y, are computed initially, from which the Jacobian
may be evaluated. These expressions are computed numerically using finite differ-
ence approximations. For example, a second-order central difference approximation
may be used to compute the transformation derivative z,, for the interior grid points,
ie.,
o Tl — Tij-1
Tn = 2A7
The transformation derivatives at the boundaries are evaluated with forward or
backward second-order approximations. For example, z, at the 7 = 1 boundary is
computed using the forward difference approximation
I = =31 +4Zi2 — i3
K 24An
A comparison of the metric 7, evaluated numerically and analytically by Equa-

tion (9-29) and the error introduced in the numerical computations is shown in
Table (9-1).

| j | Analytic | Numerical | ERROR |
4 | —.52632E — 01 | —.52632E — 01 | .44409F — 15

8 | —.12281F 00 [ —.12281E + 00 | —.13323F — 14
12 | —.19298E + 00 | —.19298F 4 00 | —.26645E — 14

Table 9-1. Comparison of the metric 1, at ¢ = 4 evaluated analytically

and numerically.

3
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Notice that for this simple grid the errors in the numerical computation of the
metrics are extremely small (practically zero!). The distributions of metrics are
shown in Figures 9-6a through 9-6d. Each tic mark on the vertical axis represents
a numerical change of 0.25 in Figures 9-6a and 9-6b, —0.1 in Figure 9-6¢, and
0.125 in Figure 9-6d. These figures illustrate the smooth variations of the metrics.
Erratic metric distributions, especially those with some sort of discontinuity, will
certainly invite disaster! It is strongly recommended that the metric distributions
be investigated prior to solving the governing PDEs of fluid motion.

The simple algebraic model just investigated does not include an option for
clustering. Next, some algebraic expressions which employ clustering techniques
are presented.

For flow problems where large gradients are concentrated in a specific region,
additional resolution of the flow properties is essential. As an example, flow in the
vicinity of a solid surface in a viscous fluid possesses large flow gradients. Accurate
computation of flow gradients in this region will require many grid points within
the domain. Rather than using a nearly uniform grid distribution in the physical
domain, grid points may be clustered in the regions of high flow gradients, which
reduces the total number of grid points and thus increases efficiency. Some examples
of such algebraic expressions with clustering options are provided below. As a first
example, consider the transformation given by

£ =z (9-31)

_ {8 1— /BB~ 1+ /H))
(A In{(8 + 1)/ (5~ 1) (%:32)

In this equation, 8 is the clustering parameter within the range of 1 to co. As
the value of § approaches 1, more grid points are clustered near the surface, where
y = 0. From Equations (9-31) and (9-32), the inverse of the transformation can be
written as

r = ¢ (9-33)

y = H B+1) - (8- {[(B+1)/(8 - 1]'™)
B+ 1)/(B-1]'7+1

(9-34)



370 Chapter 9

(c) (d)
Figures 9-6a, b, ¢, d. Distribution of metrics for the domain
shown in Figure 9-4.

The metrics of transformation may be determined analytically from the algebraic
relations (9-31) and (9-32) and are given below:

£ =1 (9-35)
e = 0 (9-36)
& = 0 (9-37)
W = 20 (9-38)

H{F -1 - (y/H)PHn[(B+1)/(8 - 1]}
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The physical and computational domains, using the transformations (9-31) and
(9-32), are shown in Figures 9-7a, 9-7b, and 9-7c. The grid system is generated for
a 21 x 24 grid, and clustering parameter values of 1.05 and 1.2 are used, respectively.
The distributions of metric 5, are shown in Figures 9-8a and 9-8b. Each tic mark on
the vertical axis represents a change of 0.5 in Figures 9-8a and 9-8b. Obviously, this
type of grid is suitable for boundary-layer type computations, where grid clustering
near the surface is required.

For a physical domain enclosed by lower and upper solid surfaces, clustering at
both surfaces must be considered. A flow field within a 2-D duct is such an example.
The following algebraic equations may be employed for this purpose:

E=gz (9-39)

In ({8 + (e + Dy/H] — 20}/{8 — [(2a + L)y/H] + 221}
B+ D/(5=1)

n=a+(l—a)
(9-40)

where 3 is the clustering parameter, and « defines where the clustering takes place.
When a = 0, the clustering is at y = H; whereas, when o = 1/2, clustering is
distributed equally at y = 0 and y = H. The inverse transformation is given by

T | = £ (9-41)

(2a+ 8) [(B+1)/(8 — 1)]-2V(1-2) 4 20 —

¥ = H i) 1+ (B /(@ - D]

(9-42)

Analytical expressions for the metrics are determined from Equations (9-39) and
(9-40) as

f:: = 1 (9—43)
6 = 0 (9-44)
= = 0 (9-45)

_ 28(2a + 1)(1 — o)
T H{F—[Ra+ Dy/H - 20F} In[(f+ 1)/(B - 1)]

(9-46)
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(a) B=1.05 (b} B =12

(¢) Computational domain.

Figures 9-7a, b, ¢. The physical and computational domains generated by
transformation functions (9-31) and (9-32).

Figures 9-8a, b. Metric distributions for the domains of Figures
9-7a and 9-7b.
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Grid systems generated for a domain with 21 x 24 grid points are shown in Figures 9-
9a and 9-9b for o = 1/2 and clustering parameters of 1.05 and 1.2, respectively.
The corresponding 7, metric distributions are shown in Figures 9-10a and 9-1Cb.
Each tic mark on the vertical axis represents a change of 0.5 in Figures 9-10a and
9-10b.
For problems where clustering in the interior of the domain is required, the
following relations may be utilized

§ =« (9-47)

n = A+ %sinh‘l [(% - 1) sinh(ﬁA)] (9-48)

‘where

1 1+ (ef — 1)(D/H)
A=gp'n [1 F(e? —1)(D/H)

In Equation (9-48), 3 is the clustering parameter in the range of 0 < 8 < oo,
and D is the y coordinate where clustering is desired. The inverse transformation
is given by:

r = ¢ | | (9-49)

_ sinh[8(n — A)] ‘
y =D _{1 + sinh(8A) (.9-50)
(a) B=1.05 (b) =12
Figures 9-9a, b. Grid system generated by the transformation
function (9-42).
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Figures 9-10a, b. Metric distributions for the domains shown
in Figure 9-9.

Note that for 8 = 0, no clustering is enforced, while a denser clustering of grid
points near D is produced for larger values of 8. Analytical expressions for the
metrics are determined from Equations (9-47) and (9-48) and are given by:

£ =1 - {9-51)
& = 0 (9-52)
n: = 0 (9-53)
n = sinh(A) (9-54)

BD {1+ [(y/D) - 1 sink?(BA)}

The algebraic expressions given by (9-49) and (9-50) are used to generate the
grid systems shown in Figures 9-11a through 9-11c. The clustering is specified at
D = H/2 for the domains shown in Figures 9-11a and 9-11b and at D = H/4 for
the domain shown in Figure 9-11c. The values of 3 are 5, 10, and 5, respectively.
The distributions of metric 7, are illustrated in Figures 9-12a through 9-12¢c. Each
tic mark on the vertical axis represents a change of 0.5 in Figures 9-12a through
9-12¢.

Next, an algebraic expression for generating a grid system around an arbitrary
shape is investigated. For simplicity, a conical body shape with a circular cross-
section will be assumed. The grid system is determined at cross sections where the
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relevant PDEs are to be solved. An example would be the solution of parabolized
Navier-Stokes equations over a conical configuration in a supersonic flow field. The
flow field is depicted in Figure 9-13 where cross-sectional planes are normal to the
body axis.

An alternate choice would be the selection of a grid system normal to the bedy
surface. For many applications where the flow is symmetrical, only half of the
domain needs to be solved. With that in mind, consider the generation of a grid
system at a cross section.

(a) D=H/2, B=5 (b) D=H/2, =10

(c) D=H/4, B=5

Figures 9-11a, b, c. Grid systems generated by the transformation
functions {9-49) and (9-50).

Note that since the physical domain is changing at each streamwise station, a new
grid system must be generated at each station. However, no difficulties arise since
the grid generating procedure is coded as a subroutine and called at each z-station.

e
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First a domain bounded by the body, the plane of symmetry, and the free stream
must be defined. The outer boundary in the free stream must be far enough away

A typical procedure is described next.

An alternate

selection for the outer boundary would be at the bow shock itself. However, the

to include the bow shock generated by the conical configuration.
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shock location is unknown; therefore, Rankine-Hugoniot relations must be utilized
to determine its location. This procedure is known as shock fitting and will be

investigated later in Chapter 13.
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Figures 9-12a, b, c. Metric distributions for the domains
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shown in Figure 9-11.
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For now, the outer boundary is specified as the free stream. This specification
is accomplished by defining two elliptical shapes (or any other geometries you may
choose) with semi-major and semi-minor axes denoted by a, b1, and bs. This specifi-
cation is illustrated in Figure 9-14. The inner boundary represents the circular cone
and will be defined by its radius, R. The number of grid points in the circumferen-
tial direction is specified by KM, and for this example they are distributed equally
around the body. This distribution is accomplished by defining the incremental
angle DELTHET as DELTHET = n /(KM — 1), and subsequently computing 8 at
each k. The nomenclature is shown in Figure 9-15. Note that k£ = 1 is chosen on
the windward side of the body and k = KM is on the leeward side. The y and z
coordinates of the grid points on the body are easily computed from

y(1,k) = —Rcosf (9-55)
z(1,k) = Rsiné (9-56)

The corresponding grid points on the outer boundary are defined by rays emanating
from the origin with the appropriate angular positions.

Figure 9-13. The grid system in the physical domain.
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For this purpose, the length of the rays are obtained from the equation of an ellipse

as 1

{(59)+ (59

where appropriate values of a and b are used. Subsequently, the y and z coordinates
of the grid points on the outer boundary are determined by similar expressions given
in Equations (9-55) and (9-56).

For viscous flow computations, clustering in the vicinity of the body is desirable.
For this purpose the following expression is used:

wr-ef-al B PG )] e

In (9-57), 4 is the radial distance between the body and the outer boundary, i.e.,
6(k) = r(k) — R(k) (9-58)

Figure 9-14. Nomenclature required to describe the physical domain.
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and f is the clustering parameter. The clustering function given by Equation (9-57)
places = 0.0 at the outer boundary and n = 1.0 at the surface. The computational
domain is shown in Figure 9-16. A computational domain for the entire problem
equivalent to the physical space depicted in Figure 9-13 is shown in Figure 9-17. The
y and z coordinates within the physical domain are evaluated from the following
equations

y(k,5) = y(k,1) — c(k, 7) cos a(k) (9-59)

and

z2(k,j) = z(k,1) + c(k, 7) sina(k) (9-60)

where « is defined as the angle between the normal to the body in the cross-sectional
plane and the vertical direction. This relationship is also shown in Figure 9-15.

I
k=1

Figure 9-15. Nomenclature required to define the grid system.
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Shock

Figure 9-16. Computational grid system at a cross section.
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Figure 9-17. Computational domain for the 3-D problem.
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Figure 9-18. Cross-sectional grid system generated for a circular
conical configuration.

A grid system generated for a 37 x 26 grid is shown in Figure 9-18 for 8 = 1.4,
The configuration is defined by R = 1.0, ¢y = 2.0, b = 1.8, and b = 3.0. For
this problem the metrics are evaluated numerically by using a second-order central
difference approximation in the interior of the domain and by second-order forward
and backward difference approximations at the boundaries. The metric distribu-
tions are illustrated in Figures 9-19a through 9-19d, where the smoothness of the
metrics is clearly evident. Note that if the metric distribution had discontinuities,
further investigation of the suggested grid system and the solution procedure used
to obtain the grid and the metrics would be required.

The algebraic expressions used to generate the grid systems just presented are
a few among many appearing in various literature. However, the procedures used
to generate grids by algebraic methods are fundamentally similar.

For many applications, algebraic models provide a reasonable grid system with
continuous and smooth metric distributions. However, if grid smoothness, skewness,
and orthogonality are of concern, grid systems generated by solving PDEs must be
used. This option includes elliptic, parabolic, or hyperbolic grid generators, which
will be discussed in the next section. For the time being, briefly consider the elliptic
grid generators. In this technique, some type of elliptic PDEs is solved to identify
the coordinates of the grid points in the physical space. This approach is similar to
what was just accomplished with algebraic models, except now a system of PDEs
must be solved.
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(1) Computationally, they are very fast;
(2) Metrics may be evaluated analytically, thus avoiding numerical errors;

(3) The ability to cluster grid points in different regions can be easily imple-
mented.

The disadvantages are:

(1) Discontinuities at a boundary may propagate into the interior region which
could lead to errors due to sudden changes in the metrics;

(2) Control of grid smoothness and skewness is a difficult task.

Some of the disadvantages of the algebraic grid generators are overcome by
the use of PDE grid generators which is, of course, accomplished with increased
computational time. This procedure will be described in the following section.

9.6 Partial Differential Equation Techniques

A grid generation scheme which is gaining popularity is one in which PDEs
are used to create the grid system. In these methods, a system of PDEs is solved
for the location of the grid points in the physical space, whereas the computational
domain is a rectangular shape with uniform grid spacing. These methods may be
categorized as an elliptic, parabolic, or hyperbolic system of PDEs. The elliptic
grid generator is the most extensively developed method. It is commonly used for
2-D problems and the procedure has been extended to 3-D problems. Parabolic and
hyperbolic grid generators are not as well developed but have some very interesting
features. In this section all three methods will be introduced.

The presentation of various schemes will be limited to 2-D problems; however,
methods which can be extended to 3-D problems will be identified. By 3-D problems
(in grid generation), we refer to situations where all three coordinates are trans-
formed. For some 3-D applications, a coordinate transformation in the streamwise
direction may not be required, i.e., £ = z. For such problems, the grid system will
be generated only in a 2-D sense at each streamwise location as needed. Thus,
the 2-D grid generators are used extensively for 3-D computations. A typical grid
system was shown in Figure 9-13.

Due to the advantages previously introduced, the generalized coordinate system
will be used in the grid generation techniques which are presented next.

9.7 Elliptic Grid Generators

For domains where all the physical boundaries are specified, elliptic grid genera-
tors work very well. A system of elliptic equations in the form of Laplace’s equation





