CHAPTER 7

Strength of Propellers

7.1 Introduction

The propeller is a vital component essential to the safe operation of a ship
at sea. It is therefore important to ensure that ship propellers have ade-
quate strength to withstand the forces that act upon them. On the other
hand, providing excessive strength would result in heavier propellers with
thicker blades than necessary, leading to a reduction in propeller efficiency.
A method is therefore needed to calculate the forces acting on a propeller and
the resulting stresses, so that the propeller has just the necessary strength
for safe operation in service.

The forces that act on a propeller blade arise from the thrust and torque
of the propeller and the centrifugal force on each blade caused by its revo-
lution around the axis. Owing to the somewhat complex shape of propeller
blades, the accurate calculation of the stresses resulting from these forces is
extremely difficult. Moreover, while one may be able to estimate the thrust
and torque of a propeller with reasonable accuracy for a ship moving ahead
at a steady speed in calm water, it is difficult to determine the loading on
a propeller when a ship oscillates violently in a seaway and the propeller
emerges out of water and then plunges sharply into it at irregular intervals.
The effects of the manoeuvring of a ship on the forces acting on the propeller
are also difficult to estimate, particularly for extreme manoceuvres such as
“crash stops”. One must also take into account the fact that even in calm
water the forces acting on the propeller blades are not constant but vary dur-
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ing each revolution due to the non-uniform wake in which a propeller works.
Finally, a propeller must also withstand the effects of the stresses that may
be locked into it during its manufacture, of propeller blade vibration and of
corrosion and erosion during its service life.

It is thus evident that the accurate determination of propeller strength is
an extremely complex problem. In practice, therefore, it is usual to adopt
fairly simple procedures based on a number of assumptions to make the
problem less intractable, and to allow for the simplifications by ensuring
that the nominal stresses determined by these procedures have values which
experience has shown to be satisfactory. The ratio of the ultimate tensile
strength of a propeller material and the allowable stress (factor of safety or
load factor) used in the simplified procedures for determining propeller blade
strength is high, often lying between 10 to 20.

Among the simplifications made in the procedures for determin’ :g pro-
peller blade strength are:

(i) Each propeller blade is assumed to be a beam cantilevered to the boss.

(ii) The bending moments due to the forces acting on the blade are as-
sumed to act on a cylindrical section, i.e. a section at a constant radius.

(1ii) The stresses in the cylindrical section are calculated on the basis of
the simple theory of the bending of beams, the neutral axes of the
cylindrical section being assumed to be parallel and perpendicular to
the chord of the expanded section.

(iv) Only the radial distribution of the loading is considered, its distribution
along the chord at each radius being ignored.

(v) Calculations are carried out only for the ship moving at constant veloc-
ity in calm water, the effects of manoeuvring, ship motions in a seaway
and variable wake not being taken into account.

Further simplifications are made in some methods for estimating propeller
blade strength.
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7.2 Bending Moments due to Thrust and Torque

Consider a propeller with £ blades and diameter D operating at a speed
of advance V) and revolution rate n with a thrust T and a torque Q. The
bending moments due to thrust and torque at the propeller blade section at
a radius rg may then be determined,

Let dT be the thrust produced by the Z blade elements between the radii
r and r + dr, Fig.7.1. The bending moment due to the thrust on each
element at the section ry is then:

’ dMT = ﬂ'{f‘ - r.:;} (?.1}

By =

so that the bending moment at the section due to the thrust on the blade
is:

R dr
MT_L -z-EF[r—rg}dr (7.2)

The thrust T and the bending moment due to thrust Mz act in a plane
parallel to the propeller axis.

If dQ is the torque of the Z blade elements between r and r + dr, the
force causing this torque on each of these elements in a plane normal to the
propeller axis is dQ/r Z, the resulting bending moment at the section at
radius rg being:

Mg = é dO (r = ro) (7.3)

The bending moment due to torque is then:
R
Mo =j id_?[r-r.,)dr (7.4)

and this acts in a plane normal to the propeller axis.
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Figure 7.1 : Bending Moments due to Thrust and Torgque.

Example 1

A three-bladed propeller of 3.0m diameter has a thrust of 360kN and a torque
of 300kNm. Determine the bending moments due to thrust and torque in the
root section at 0.3m radius, assuming that the thrust and torque are uniformly
distributed between this radius and the propeller blade tip.
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Z=3 D=30m T =2360kN Q = 300kNm

rg = 03m % %th.
Hence:
R
dT" dT
afr T 360 _ -1
dr = R=re ~ 150-030 _ J00KNm
Similarly,
Q _ _Q 00 _
dr R-ry 1.50 — 0.30 250kN
R 1.50
1 4T 1
Mr = - —(r=r dr=f - 300 (r — 0.30) dr

100 (0.57* —0.37) ;5 = 72.000kNm

Il

Mg = — —(r=ry)dr = =x250(1——1] dr
Q er df't u] u‘ma ( f")
250
3

(r=03Inr)}35 = 59.764kNm

It is often convenient to express the bending moments due to thrust and
torque in terms of non-dimensional coefficients. Putting:

r

T = Krpn®D% Q = Kgpn’D®, =z = R (7.5)

in Eqns. (7.2) and (7.4), one obtains:

2 N5 1.0
_ pn*D dKr
My = 57 [ R @ ro)ds (7.6
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and
25 pLO
_pn*D dKg = — xg
Mq = 7 o I = dz (7.7)
If rg = xg K iz the radius of the root section, then:
K;,-=f—d:: K =f—dz (7.8)
e dT ° " [, dz
go that:
1
v HTPR:_D&L iz (x — x) dz 79)
T 2Z U dKr '
— dr
2o dr
and
1 dK —
Kgpn? Db f d:-‘:q - xzu dz
Mg = =2 i (7.10)
Z f dKg
dx
zp dT

The evaluation of My and Mg thus depends upon the distribution of thrust
and torque over the radius. A linear distribution is sometimes assumed.
However, circulation theory calculations indicate that in most propellers the
thrust and torque distributions may be approximately represented by:

d K .

f = kot (1-2)"° (7.11)
dK

_qu = koz? {1—*1:]“‘Js (7.12)

where k; and k; are constants. Substituting these expressions into
Eqns. (7.9) and (7.10), the bending moments due to thrust and terque be-
come:
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_ Krpn®*D® 16 — 6xf — 10z}
- 62 B8+12z+ 15z

(7.13)

and

Kgpngﬂs B—=2xg - Emg

Mg = _
Q Z  8+12zp+15%2

(7.14)

In many propellers, the root section may be assumed to be at 0.2R, so
that for such propellers z3 = 0.2 and:

2
Mr = 02376 KT 22 D% _ 53z T D (7.15)
Z Z
K 2 N5
Mg = 0.6691 %ﬂﬂ - ﬂ.EﬁBl% | (7.16)

Example 2

A three-bladed propeller of diameter 3.0m has a thrust of 380 kN and a torque of
300 kN m at 180rpm. The thrust and the torque may be assumed to be linearly
distributed:

dKq

dr zkzil-‘

— =k

dz

between the root section at z = 0.2 and = = 1.0. Determine the bending moments
due to thrust and torque at the root section. How do these values compare with
the values obtained by using the distnibutions of Eqns. (7.11) and (7.12)7

Z=3 D=30m T =230kNm n = 180rpm = 3.0s7!

Q = 300kN
% = kz % = kyz zp = 0.2
. Kp 4 360 = 0.4818

= pn?D' _ 1.025 x 3.0° x 3.00
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Q 300
pn? D% T 1,025 x 3.0% x 3.0°

Kq =

1.0 1.0
KT:_/- ﬂ"d:t:f ku:d:r:ﬂ.{slﬁ
] dz o2
that is:
mz 1.0 1
ki 5| = Ski(10-004) = 048k = 04818
0.2
II.’I - 1.{}03?5
1.0 Lo
Kq=f ﬂLF‘f.ﬂz= kyz dr = 0.48k; = 0.1338
Ty 0.2
ks = 0.27875
EDE 1.0 dAK
Mr = P8 T,
T=7 ), T Em)d
2 5 ,LO
_ 1025 x;};ﬂax&ﬂ f 1.00375 2 (z - 0.2) dz
0.2
1 1.0
= 375.0135 (Ex"—ﬂ.lf) = 88.003kNm
0.2
_ pn=D5f1-° dKq z — 2o
Mq = Z s OF T d=
1. . 2 ) 5 1.0 -0,
_ 025 x 3.0° x 3.0 f 0.2737'5:: de
3 0.2 T

Iz 1.0
= 208.2880 (? - IJ'.E::) = 66.652kNm

0.2

= 0.1338
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Using the thrust and torque distributions of Eqns. (7.11) and (7.12) with =y = 0.2,

TD 60
Mr = 0.2376— = 0.2376 230 X 3

ﬂ.ﬁﬁﬂl% = 0.6691 % = 66.910kNm

Mg

(Compare these results with those of Examplel in which uniform thrust and
torque distributions have been used.)

7.3 Bending Moments due to Centrifugal Force

In addition to the bending moments due to thrust and torque, bending
moments in planes parallel to the propeller axis and normal to it also arise
due to the centrifugal force on each blade. If a is the area of the blade
section at radius r, the mass of the propeller blade between a radius rg and
the blade tip is given by:

my = fﬂpma.ir (7.17)

To

where p,, is the density of the propeller material. The centroid of the pro-
peller blade will be at a radius :

R
furdr
Fo= =00

= (7.18)
. f a dr
o
so that the centrifugal force on the blade will be:
R
Fe = mpi(2rn)? = (2« n}zpmf ar dr (7.19)
ra

If the distances between the centroid C of the blade and the centroid Cg of
the blade section at radius ry are measured as shown in Fig. 7.2, the bending
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al

Centroid of Blade

C:
Co: Centroid of Section
ot rodius r,

Figure 7.2 : Bending Moments due to Certifugal Force.

moments due to the centrifugal force in planes through the propeller axis
and normal to it are respectively:

Mg = Fc-z (7.20)
Ms = Fc-y. (7.21)

The bending moment Mg arises due to the rake of the propeller blades
and acts in the same direction as the bending moment due to the propeller
thrust My in propellers with blades raked aft. If the blades were raked
forward so that the line of action of the centrifugal force passed through the
centroid of the section at radius rp, i.e. if z, = 0, the bending moment due
to centrifugal force in a plane through the propeller axis would be zero. The
bending moment M arises from the skew of the propeller blades and actsin a
direction opposite to the bending moment due to the torque My in propellers
with skewed back blades. In propellers with moderate skew, the bending
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moment due to skew is small and may be neglected, particularly since the
error due to this overestimates the resulting bending moments and yields
conservative stress values. Moreover, the existence of a bending moment
due to skew contradicts the assumption made earlier that the distribution of
loading across the blade is ignored. In propellers with heavily skewed blades
such an assumption is obviously untenable.

Example 3

;I‘Elle areas of blade sections at varions radil of a propeller of 3.0m diameter are as
ollows:

/R : 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1.0
Area, m* : 00651 00802 0.0843 0.0507 0.0691 0.0538 0.0358 00168 0

The propeller runs at 180rpm. The propeller is made of Manganese Bronze with
a density of 8300kg per m®. Determine the centrifugal force on the blade if the
root section is at 0.2R. If the centroid of the section is at distances of 0.150m
and 0.035m from the line of action of the centrifugal force measured parallel and
perpendicular to the propeller axis, determine the bending moments due to rake
and skew.

D =30m n = 180rpm = 3.0s7} pm = 8300kgm™?
o = 0.2 z. = 0.150m Yo = 0.035m
R
R ar dr
my = f pmﬂdr F = j1_
o a dr
ro
my and 7 are calculated using Simpson's Rule as follows:
z a SM__f(m) f(ms) 7
0.2 0.0651 1 0.0651 0.01302
0.3 0.0802 4 0.3208 0.09624
0.4 0.0843 2 0.1686 0.06744
0.5 0.0807 4 0.3228 0.16140
0.6 0.0691 2 0.1382 0.08292
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T a SM flmy) f(my) ¥

0.7 0.0538 4 0.2152 0.15064

0.8 0.0358 2 0.0716 0.05728

0.9 0.0168 4 0.0672 0.06048

1.0 0 1 0 0
1.3695 0.68942

R

adr = 1 x 150 % 1.3695 = 0.068475m°
v 3710

“

1 150
3% 70 X 0.68942 x 1.50 = 0.0517065 m*

10

R
ar dr
f,n 00517065

R
fudr
o

0.068475

= (0.755m

R
my = p,...f a dr = B300 x 0.068475 = 568.34 kg
ro

Fo = my7(2rn )2 = 568.34 x 0.755 x (27 x 3) kgms~?

= 152.461 kN
Mg = Foz,
Mg = Fey.

152.461 x 0.150 =
152.461 x 0.035 =

7.4 Stresses in a Blade Section

22.869kNm
5.336 kN m

The bending moments on the blade section at radius rg due to thrust and
torque and those due to centrifugal force, illustrated in Figs. 7.1 and 7.2, are
shown in Fig. 7.3 with reference to the blade section and its principal axes
(zo- and yo- axes). The components of the resultant bending moment along
the principal axes are then:
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AXIS PARALLEL TO

|

PROPELLER AXIS -- 1!
l ;‘u

Yo -l'uiIﬂHw'!5 /I /"
\ Mnn
N
N .
C ) -
. (Mr"‘Hn)

i
1 CLOCKWSE MOMENTS
ABOUT AN AXIS ARE

POSITIVE

Figure 7.3 : Bending Moments at a Blade Section.

My = —(My + Mg) cosp — Mg sing (7.22)
My = (Mp+ Mg) sinp — Mg cosy (7.23)

in which ¢ is the pitch angle of the blade section, and the bending moment
due to skew has been neglected.

If Iy and I, are the moments of inertia (second moments of area) of the
blade section about the zp- and yy- axes, and ag the area of the section,
one may determine the stress due to the bending moment and the direct
tensile stress due to the centrifugal force at any point of the section whose
coordinates are (zg, yp):
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Mo _ Mg  Fe

S = -
Io/yo  Iw/zo  ao

(7.24)

a positive stress indicating tension and a negative stress indicating compres-
gion. It is usual to calculate the stresses at the leading and trailing edges
and at the face and back at the position of maximum thickness of the blade
section. For sections of normal aerofoil shape the maximum tensile and
compressive stresses occur at the face and the back respectively, close to the
position of maximum thickness of the section. The maximum tensile stress
in the root section due to bending is then equal to the bending moment
Mo divided by the section modulus I.5/ys where yg is the distance of the
centroid from the face chord.

Example 4

A propeller of 3.0m diameter and constant face pitch ratio 1.0 runs at 180 rpm.
The bending moments due to thrust and torque are respectively 65.700 kN m and
59.800kNm. The mass of each blade is 570 kg, the centroid being at a radius of
0.755 m. The centroid of the root section at 0.2R is 0.150 m forward of the centroid
of the blade and 0.035m towards the leading edge from it. The root section has a
chord of 0.800 m, a thickness of 0.160m and an area of 0.0900 m?. The position of
maximum thickness is 0.270 m from the leading edge. The centroid of the section is
0.065m from the face and 0.290 m from the leading edge. The leading and trailing
edges at the root section have offsets of 0.020m and 0.010 m from the face chord.
The moments of inertia of the section about axes through its centroid and parallel
and perpendicular to the face chord are respectively 1.5x 10" m* and 3.2x10"*m*.
Determine the stresses at the leading and trailing edges, and at the face and the
back.

D = 3.0m g =10 n = 180rpm = 3.0s7’
My = 65.700kNm Mg = 59.800kNm mp = 5T0kg = 07585m
z. = 0.150m Ye = 0.035m ag = 0.0900m?

Lo = 15x107%m* [, = 32x10"*m*
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Coordinates with respect to the given axes:

Face: © =z = 0.290 - 0.270 = 0.020m w = —0.065m
Back: zg = 0.020m yo = 0.160 - 0.065 = 0.095m
Leading Edge: 2o = 0.200m yo = 0.020 - 0.065 = —0.045m
Trailing Edge: zo = —0.800 +0.290 = —0.510m

yo = 0.010-0.065 = —0.055m

Fe = my7 (2rn)? = 570 x 0.755 x (27 x 3.0)* kgms™?
= 152.906 kN |

Mp = Foz. = 152.906 x 0.150 = 22.936kNm

Ms = Foy, = 152.906 x 0.035 = 5.352kNm

P/D _ 1.000

T~ = — 55 = L8915 = 57.858deg

s
I

My = —(Mp+ Mg) cosp — (Mg — Ms) singp

I

—(65.700 + 22.936) 0.5320 — (59.800 - 5.352) 0.8467

= -=93.255kNm

My = (Mr+ Mpg) sinp - (Mg — Mg ) cosp
= (65.700 + 22.936) 0.8467 — (59.800 — 5.352) 0.5320

= 46.082kNm

Stress:

Mo _ My  Fo

§ = -
Io/wo Iy/zo a0
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At the leading edge:

-93.255 46.082 152.906 -2

S = {5x10-4/(-0045) ~ 32x10-3/0.290 T 0.0900 '

2.5499 x 10°kNm™? = 25.499Nmm™?

Similarly, stresses at the other points are obtained as:

Trailing edge S = 43.236 N mm™?
Face S = 41.821Nmm™?
Back § = ~57.651Nmm™?

7.5 Approximate Methods

Owing to the comparative complexity of the method to determine propeller
blade stresses discussed in the preceding sections, various approximate meth-
ods have been proposed. Such methods have been found to give satisfactory
results and are sometimes used in the preliminary stages of propeller design
when all the design details are not known. Two such methods are considered
here. '

A widely used approximate method is due to Admiral D. W. Taylor (1933),
who considered the problem of propeller blade strength in great detail but
by making various assumptions succeeded in reducing the problem to a few
formulas for estimating the maximum compressive and tensile stresses in
the root section of the propeller blade. The major assumptions in Taylor’s
method in addition to those given in Sec.7.1 are:

(i) The thrust distribution along the propeller radius is linear.
(ii)) The maximum thickness of the blade also varies linearly with radius.
(iii) The root section is at 0.2R.

(iv) The propeller efficiency is a linear function of the apparent slip in the
normal operating condition.
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Based on these assumptions, the maximum compressive and tensile stresses
in the root section due to thrust and torque are given by formulas, which
can be put into the following form:

Se = G":' D - (7.25)
Sr = Sc (u.sse+01 E) (7.26)

The additional compressive and tensile stresses due to centrifugal force are
given by:

Cj; tane
— -
2D

S¢ = Cypmn®D? 1 (7.27)

Sp = Copmn?p? |[2RE L CT00E (7.28)

where:
Co,C1,C,C3,Cy

coefficients dependent on the pitch ratio P/D

Pp = delivered power

n revolution rate

= number of blades
diameter

T N
]

chord-diameter ratio of the root section

blade thickness fraction

ol& Ule
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thickness-chord ratio of the root section

density of propeller material
rake angle

maximum chord-diameter ratio of the propeller.

SF o P e

Equations (7.25)—(7.28) are dimensionally homogeneous. However, the

values of the coefficients in Table 7.1 give the stresses in kN per m? if Pp is

in kW, n in revolutions per sec, D in m and p,, in kg per m®.

Table 7.1
Coefficients for Taylor’s Method
P
D Co Cy Cy Cs Cs

0.600 7.499 0.650 0.002568 2.750 1.590
0.700 6.471 0.710 0.002568 2.600 1.690
0.800 5.659 0.754 0.002568 2.400 1.790
0.900 5.073 0.784 0.002568 2.200 1.870
1.000 4.583 0.804 0.002568 2.070 1.925
1.100 4.190 0.817 0.002568 1.920 1.980
1.200 3.895 0.823 0.002568 1.800 2.020
1.300 3.674 0.820 0.002568 1.690 2.050

Taylor's method has been found to give satisfactory results for propellers
with normal blade outlines and moderate blade area ratios. For very large
blade area ratios the method gives stress values which are 10-15 percent
lower than values obtained by more accurate methods.

Another approximate method for estimating propeller blade stress is due
to Burrill (1959). In this method it is assumed that the thrust distribution
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is such that the thrust on each blade can be taken to act at a point whose
distance from the root section is 0.6 times the length of the blade from root
to tip. The transverse force on each blade which gives rise to the torque is
similarly taken to act at a distance from the root section of 0.55 times the
length of the blade. The thrust and torque bending moments can therefore
be written as:

T TD

Mr = Exl}.ﬁl}(ﬂ—ru} = TXD.SD(I—SQ) (729]
_ @Q@x055(R-rp)  Q@x0.55(1-zp)
Mg = Z[055(R-ro)+rg]  Z(0.55+0.45x0) (7.30)
where rp = zo R is the radius of the root section.
The mass of each blade is approximated by:
my = pmfA—;k (7.31)

where £ is the mean thickness of the blade from root to tip, Ap the developed
blade area and k a coefficient. For a linear distribution of thickness,

= 050 [(1-20) 8 + (14+20)3] (732

where tg/D is the blade thickness fraction of the propeller and ¢, is the blade
thickness at the tip. A value of k = 0.75 is often used.

The distance of the centroid of the blade from the root section is taken as
0.32 times the length of the blade from root to tip for blades with normal
outlines and 0.38 times the blade length for blades with wide tips, i.e.

ZR = zoR+k (1-20)R (7.33)

where ¥ = & R is the radius of the blade centroid, k; = 0.32 for normal blade
outlines and k; = 0.38 for wide tipped outlines.
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The centrifugal force is then given by:

Fc = my(27n)*zZR (7.34)

The bending moment due to rake is:

Mg = Fo(%—zo)R taneg (7.35)

where £ is the effective rake angle, about 6 degrees greater than the geo-
metric rake angle. The effect of skew is neglected.

The cross-sectional area of the root section and its section modulus are
estimated as follows:

ks ct (7.36)

]
I

= ka n(‘:t'2 (7.37)

| ey
I

where ¢ and ¢t are the chord and thickness of the root section, and k; and k3
are coefficients whose values are as follows:

Section Shape ka ky

Segmental 0.667 0.112
Aerofoil 0.725 0.100
Lenticular 0.667 0.083

The stress in the root section is then given by:

= (Mr+Mg)cosp+Mgsing  Fc
- 7 =<

y

S (7.38)

where ¢ is the pitch angle of the root section. Burrill's method gives the
stress on the face of the root section at the position of maximum thickness.
The maximum tensile stress normally occurs at this point.
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Example 5

(a) A four-bladed propeller of 5.0 m diameter has a constant pitch ratio of 0.950,
an expanded blade area ratio of 0.550 and a blade thickness fraction of 0.045.
The root section is at 0.2R and has a chord-diameter ratio of 0.229 and a
thickness-chord ratio of 0.160. The maximum chord-diameter ratio of the
blade is 0.301. The propeller blades have a rake of 10 degrees aft. The pro-
peller is made of Nickel Aluminium Bronze, which has a density of 7600 kg
per m®. The propeller has a delivered power of 5000kW at 120 rpm. Deter-
mine the propeller blade stresses by Taylor's method.

(b) Determine the propeller blade stress by Burrill's method given the following

additional data: speed of advance 7.0m per sec, propeller efficiency 0.690
and blade thickness at tip 17.5mm. The propeller blades have a normal

outline and aerofoil sections.

(a) Taylor's method:

- - P Ag to _
Z=4 D=50m 3-—-9.95[] — = 0.550 E_D.MS
- ¢ _ t_ Crmax
g = 0.2 D= 0.229 = 0.160 D = 0.301

From Table 7.1 for g = 0.950,

Co = 4828 C, = 0.794 C; = 0.002568

Cy = 2135 C; = 1.898
s Co Pp _ 4.828 x 5000
= c [to\?  4x20x50° x 0229 x (0.045)2

= 52057kNm~? = 52.057Nmm™?
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St = S¢ (0.ﬁﬁﬁ+ﬂ1é) = 52057 (0.666 + 0.794 x 0.160 )

= 41283kNm~? = 41.283Nmm™?

SE- - C,pmnzpz [Cﬂ tm-ﬁ_l]

2to/D

0.002568 x 7600 x 2.0% x 5.0° [w - 1'

2 % 0.045
= 6212kNm~? = 6.212Nmm™?

Sp = Cypmn?p? [G2tane , Cstance 1]

3to/D  cmax/D

2.135 tan 10° + 1.898 tan 10°
3 x 0.045 0.301

= 1951.68 [ +1

9564 kNm~? = 9.564 Nmm™?

Compressive stress, Sc+ S, = 58.269N mm™?
Tensile stress, Sy + 84 = 50.847TNmm™?

(b) Burrill's method:

Va=70ms™' =060 ¢t =175mm
Normal blade outline, aerofoil sections

k = 0_75 kl = ﬂ.ﬂ kﬂ = ﬂ.m ks = ﬂ.lm

Pr = Ppn = 5000 x 0.690 = 3450 kW

T =3r =55 = 492857kN

Pp 5000

7n - w20 - 397.887kNm

Q =
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My = %xumu-zﬂ} = mxnmu-o_m)
= 147.857kNm
Mo = 9, 055(1-20) _ 397.887  0.55(1-0.20)
T Z70656+0452, 4 0.55 + 0.45 x 0.20
= 68.387kNm
t, 175
3 = o0 = 0.0035

f =050 [(1-:,)%+(1+z¢.)%] D

= 0.50[(1~-0.20)0.45 + (1 +0.20)0.0035] 5.000 m

= 0.1005m
= AsxD? o X500 10.799m? ~ Ap
3 1
Ap
Ptk

10.799

= T600 x 0.1005 x 2

x 0.75 = 1546.584 kg

= [zo+ ki (1-29)]R = [0.20+0.32(1 - 0.20)] 2.500

= 1.140m

= my (2rn)? 2R = 1546.584 x (27 x 2.0)* x L.140N

278418.5N = 278.419kN
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Mg = Fo(f —x9) R taneg

278.419(0.456 — 0.20) x 2.500 tan (104 6)° kNm

= 51.095kN m
- _ e\t o 2 2
am kyet = ky (D) - D? = 0.725 x 0.220% x 0.160 x 5.0
= 0.1521 m’
3 2
L - ksct® = ky (i) (5) D? = 0.100 x 0.229° x 0.160% x 5.0°
v D [
= 3.8429 x 10" *m*
P/D 0.950
b By mze wx020 .
@ = 56.520° cosp = 0.5516 siny = 0.8341
Stress S = {MT+MR]coacp+quimp+£g
I/y a
_ (147.857 +51.095) 0.5516 + 68.387 x 0.8341 _ 278.419
- 3.8429 x 10-3 0.1521

45230kNm™? = 45.230Nmm™?

7.6 Classification Society Requirements

Classification Societies such as the American Bureau of Shipping and the
Lloyd's Register of Shipping prescribe the strength requirements that pro-
pellers must fulfil. These include requirements for the minimum blade thick-
ness, the fitting of the propeller to the shaft, and the mechanical properties
of the propeller material.

Lloyd’s Register (LR), for example, specifies the minimum propeller blade
thickness at 0.25R and 0.60R for solid propellers (i.e. propellers in which the
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blades are cast integral with the boss, unlike controllable pitch propellers).
For a propeller having a skew angle less than 25 degrees, the blade thickness
neglecting any increase due to fillets is given by a formula which, in LR's

notation, is:
_ KCA 3150 M P
T=srvin T EFrRUIN (7.39)
where:
GBD?R?

K ==

G = density of the propeller material in g/cm?

B = developed blade area ratio

D = propeller diameter in m

R = propeller rpm at maximum power

C = 1.0 for 0.25R and 1.6 for 0.60R

A = rake at blade tip in mm (positive aft)

E = actual face modulus/0.097%L, but may be taken as 1.0 and 1.25
respectively for aerofoil sections with and without trailing edge
washback -

T = blade thickness in mm at the radius considered, i.e. 0.25R or 0.60R

L = length in mm of the expanded cylindrical section at the radius
considered

U = allowable stress in N per mm?

F = %E +0.8 for 0.25R

= % +4.5 for 0.6R

N = number of blades



Appendix 4
Twin screw ships
w = 1.7643C% - 1.4745Cp + 0.2574
Schoenherr (Rossell and Chapman, 1939)
Single screw ships

Cpy CpB/L

© = 0 A O ) (28— 18Cp)

k¥ = 0.3 for normal sterns
= 0.5-0.6 sterns with cutaway deadwood

€ in radians.
Twin screw ships
With bossings and outward turning propellers
w = 2C3(1~Cp) +0.2c08® 3y - 0.02
With bossings and inward turning propellers
w = 2C%(1-Cg)+0.2cos* 3(90 — ) — 0.02

With propellers supported by struts
w = 2Cj(1~Cp)+0.04

Burrill (1943)
Single screw ships

wp = ;7 = 0.285-0417Cp +0.796C}

467

(A4.2)

(A4.3)

(A4.4)

(Ad.5)

(A4.6)

(A4.7)



